Abstract

Mobile power sources (MPSs), including electric vehicle fleets, truck-mounted mobile energy storage systems, and mobile emergency generators, have great potential to enhance distribution system (DS) resilience against extreme weather events. However, their dispatch is not well investigated. This paper implements resilient routing and scheduling of MPSs via a two-stage framework. In the first stage, i.e., before the event, MPSs are pre-positioned in the DS to enable rapid pre-restoration, in order to enhance survivability of the electricity supply to critical loads. DS network is also proactively reconfigured into a less impacted or stressed state. A two-stage robust optimization model is constructed and solved by the column-and-constraint generation algorithm to derive first-stage decisions. In the second stage, i.e., after the event, MPSs are dynamically dispatched in the DS to coordinate with conventional restoration efforts, so as to enhance system recovery. A novel mixed-integer programming model that resolves different timescales of MPS dispatch and DS operation, coupling of road and power networks, etc., is formulated to optimize dynamic dispatch of MPSs. Case studies conducted on IEEE 33-node and 123-node test systems demonstrate the proposed method’s effectiveness in routing and scheduling MPSs for DS resilience enhancement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call