Abstract

A cold vapor atomic absorption spectrometric method was developed for the subnanogram-per-gram determination of total Hg in a wide variety of foods. Foods were weighed into 50 mL polypropylene centrifuge tubes and dried without charring at 55 degrees C in a circulating oven. Samples were then digested at 58 degrees C with HNO3, HCl, and H2O2. After matrix modification with solutions of 2% Mg(NO3)2, 0.01% Triton X-100, and Cu(II) at 10 microg/mL, samples were analyzed by using a CeTAC Technologies M-6000A dedicated Hg analyzer. Based on a 2 g sample weight, the detection limit of the method over 12 batches averaged 0.30 ng/g wet weight and ranged from 0.03 to 0.6 ng/g. Recoveries of Hg added to 17 different foods, analyzed in a routine manner, averaged 97%, and individual recoveries ranged from 77 to 107%. Accuracy was confirmed by analysis of 7 biological reference materials from the National Research Council of Canada and the National Institute of Standards and Technology. Stabilization of low concentrations of Hg in solutions containing no sample was required to prevent loss of Hg from blanks. In a comparison of NaCl, potassium dichromate, and Au(II), chloride was much more effective for stabilization than the other two, and HCl was used for subsequent stabilization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.