Abstract

In this study, we used the modified Horwitz expression (Hc= 0.01c0.8495, which gives the precision as a function of concentration) to evaluate and control the accuracy of results of silicate rock analysis obtained by X‐ray fluorescence spectrometry. This expression is currently used by the organisers of the GeoPT international proficiency tests, to assign the precision limits of each analyte and subsequently to evaluate the data provided by laboratories whose main application is geochemistry. Results for major and trace elements, determined in glass disk and pressed pellets, respectively, were evaluated. Nine international silicate rock reference materials were analysed and results were compared to the recommended values plus and minus the limits given by the above expression. Those limits are easily attained for most major elements, but not for trace elements. Sample preparation and sub‐sampling contributions to precision were evaluated by analysis of an in‐house reference sample. In our results, precision does not follow the Horwitz expression relationship with concentration. It is known that the final accuracy in XRF analysis depends strongly on instrumental settings and on the uncertainties associated with the certified or recommended values of the reference materials used to calibrate the spectrometer, but our results indicate that the precision expression can be useful, especially to inspect and correct calibration curves and to check routine instrumental accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.