Abstract

In this work, different thermal treatments of titanium isopropoxide-derived photo-catalyst precursors, designed with the purpose of generating C-doped TiO2 photo-catalysts using carbon atoms present in the TiOx gel precursors as dopants, are presented. Specifically, these look at varying the standard calcination techniques using heat treatments in He (rather than calcination in air) and lower temperature calcinations (200 °C rather than 500 °C). The formed materials are characterised using N2 physisorption, XRD, UV–Visible spectroscopy and XPS and their activities in promoting the oxidation of 4-chlorophenol under visible-light-only conditions were analysed. The nature of carbon remaining on the (or in the) material is discussed found to be both surface graphitic carbon and carbon present in anionic dopant positions. The different contributions of each type of carbon to the catalytic photo-activity under visible light are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.