Abstract
A method is proposed for the calculation of the S matrix for many-electron processes in intense-laser atom physics, in close analogy to the strong-field approximation for one-electron processes. Given a scenario of how some process evolves, corresponding approximations to the classical action are made which allow for the evaluation of the quantum-mechanical S matrix. The method is applied to the distribution of the total electronic momentum in nonsequential double ionization, and the results are compared to recent measurements. Good agreement is obtained for neon for a rescattering scenario. There is no comparable agreement for helium and argon, and possible alternative scenarios are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.