Abstract

This paper examines the most probable route to chaos a high-dimensional dynamical systems function space (time-delay neural networks) endowed with a probability measure in a computational setting. The most probable route to chaos (relative to the measure we impose on the function space) as the dimension is increased is observed to be a sequence of Neimark–Sacker bifurcations into chaos. The analysis is composed of the study of an example dynamical system followed by a probabilistic study of the ensemble of dynamical systems from which the example was drawn. A scenario depicting the decoupling of the stable manifolds of the torus leading up to the onset of chaos in high-dimensional dissipative dynamical systems is also presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.