Abstract

Abstract The dynamical behaviors of a periodic excited oscillator with multiple time scales in the form that order gap exists between the frequency of the excitation and the natural frequency, are investigated in this Letter. By regarding the whole excitation term as a parameter, bifurcation sets are derived, which divide the generalized parameter space into several regions corresponding to different kinds of dynamics. Different types of bursting phenomena, such as fold/Hopf bursting, fold/Hopf/homoclinic bursting and Hopf/homoclinic bursting, are presented, the mechanism of which is obtained based on the bifurcations of the generalized autonomous system as well as the introduction of the so-called transformed phase portraits. Furthermore, the evolution of the bursting is discussed in details, in which one may find that when the two limit cycles caused by the Hopf bifurcations of the two related equilibrium points interact with each other, homoclinic bifurcation may occur, leading to the merge of the two cycles to form a large amplitude cycle. The homoclinic bifurcation may cause the two asymmetric bursters to merge into a symmetric enlarged burster, in which the large amplitude of the spiking state agrees well with the amplitude of the cycle caused by the homoclinic bifurcation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.