Abstract

Cubic gauche polynitrogen (cg-N) is an attractive high-energy density material. However, high-pressure synthesized cg-N will decompose at low pressure and cannot exist under ambient conditions. Here, the stabilities of cg-N surfaces with and without saturations at different pressures and temperatures are systematically investigated based on first-principles calculations and molecular dynamics simulations. Pristine surfaces at 0 GPa are very brittle and will decompose at 300 K, especially (110) surface will collapse completely just after structural relaxation, whereas the decompositions of surfaces can be suppressed by applying pressure, indicating that surface instability causes the cg-N decomposition at low pressure. Due to the saturation of dangling bonds and transferring electrons to the surfaces, saturation with H can stabilize surfaces under ambient conditions, while it is impossible for OH saturation to occur solely from obtaining electrons from surfaces. This suggests that polynitrogen is more stable in an acidic environment or when the surface is saturated with less electronegative adsorbates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.