Abstract
We show how to exploit the rich hyperfine structure of fermionic alkali atoms to produce a quasi-1D topological superfluid while avoiding excessive heating from off-resonant scattering. We model interacting fermions where four hyperfine states are coupled by a variety of optical and microwave fields. We calculate the local density of states in a trap, finding regimes with zero energy topological edge modes. Heating rates in this system are significantly suppressed compared to simple Raman-induced spin-orbit coupling approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Physical Review A
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.