Abstract

Motivated by a possibility to optimize modelling of the population evolution we postulate a generalization of the well-know logistic map. Generalized difference equation reads: \begin{equation} x_{n+1}=rx^p_n(1-x^q_n), \end{equation} $x\in[0,1],\;(p,q)>0,\;n=0,1,2,...$, where the two new parameters $p$ and $q$ may assume any positive values. The standard logistic map thus corresponds to the case $p=q=1$. For such a generalized equation we illustrate the character of the transition from regularity to chaos as a function of $r$ for the whole spectrum of $p$ and $q$ parameters. As an example we consider the case for $p=1$ and $q=2$ both in the periodic and chaotic regime. We focus on the character of the corresponding bifurcation sequence and on the quantitative nature of the resulting attractor as well as its universal attribute (Feigenbaum constant).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.