Abstract

A route positioning system is a technology that identifies the current route when driving from one stop to the next, commonly found in public transportation systems such as shuttle buses that follow fixed routes. This is especially useful for smaller-scale services, such as shuttle buses, where using expensive technology and sensors for location tracking might not be feasible. Particularly in urban areas with tall buildings or mountainous regions with lots of trees, relying solely on GPS can lead to many errors. Therefore, this paper suggests a cost-effective solution that uses just one camera sensor to accurately determine the location of small-scale transportation services on fixed routes. For this, this paper uses a single-stage detection network that quickly identifies objects and tracks them using a simple algorithm. These detected features are compiled into a “codebook” using the bag-of-visual-words technique. During actual trips, this pre-created codebook is compared with landmarks that the camera sees. This comparison helps to determine the route currently being traveled. To test the effectiveness of this approach, this paper used the route of a shuttle bus on the Gachon University campus, which is similar to a downtown area with tall buildings or a wooded mountainous area. The results showed that the shuttle bus’s route was recognized with an accuracy of 0.60. Areas with distinct features were recognized with an accuracy of 0.99, while stops with simple, nondescript structures were recognized with an accuracy of 0.29. Additionally, applying the SORT algorithm to enhance performance slightly improved the accuracy from 0.60 to 0.61. This demonstrates that our proposed method can effectively perform location recognition using only cameras in small shuttle buses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.