Abstract

Trajectory planning is a prime method in the research on mobile robot navigation. Sampling-based algorithms can generate trajectories and reach the target avoiding obstacles. In this proposed work, an Enhanced Artificial Potential Field (E-APF) generates the trajectories for navigation of mobile robots and simultaneously guarantees the effectiveness and continuity of the trajectory. Aiming at the problem that the classical APF cannot adapt to the complex trajectory planning and fall as prey into the local optimal solution, this E-APF method is proposed for Wheeled Mobile Robot (WMR) route planning. In this research work, this method does not consider the influence of traditional attraction and repulsive force. The repulsive potential is built by repulsive function for discretizing outline of an arbitrarily shaped obstacle with points. This describes the workspace of the wheeled mobile robot more precisely. The reliability is proved for most of the cases by discussing the convergence of this proposed technique. Finally, an efficient obstacles avoidance based action has been performed in the chosen navigable trajectory. Trajectories that have been generated using the proposed E-APF satisfy constraints approach of the direction on both the starting and goal points. Consequently, the trajectories that are generated by the Wheeled Mobile Robot (WMR) are geometrically and dynamically feasible. Simulation results performed confirms the viability of the proposed E-APF algorithm that it can be effectively utilized in trajectory planning of wheeled mobile robots and can be applied in real-time scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call