Abstract
Route choice modelling is a critical aspect of analysing urban rail transit (URT) networks and provides a foundation for URT planning and operation. Unlike in a free-flow road network, the consideration set for route choice decisions in a URT network does not depend purely on the physical connectivity of the network and decision makers’characteristics. Instead, it is also contingent on the train schedules. This paper delves into the evolution of research on route choices in URT networks, encompassing both probabilistic route choice modelling derived from utility maximisation theory and logit curve with physical connectivity, and retrospective route choice modelling based on travel time chaining along with comprehensive transport data. The former is noted for its conciseness, simplicity, and interpretability in real-world applications, even though the methodologies may not be cutting-edge. The latter incorporates dynamic temporal information to understand activities of passengers in URT networks. Enhancements of each genres are also examined. However, these improvements might not fully address the inherent limitations of models relating to a dependency on the quality of parameters, experience of experts, and calculation efficiency. In addition, novel research adopting contemporary data mining techniques instead of classical models are introduced. The historical development of research on URT network route choices underscores the importance of amalgamating independent information networks such as surveillance networks and social networks to establish a comprehensive multi-dimensional network. Such an approach integrates passenger attributes across networks, offering a multi-dimensional understanding of passengers’ route choice behaviours. Our review work aims to present not only a systematic conceptual framework for route choices in URT networks but also a novel path for transport researchers and practitioners to decipher the travel behaviours of passengers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.