Abstract

This paper presents a novel idealised dynamical model of day to day traffic re-routeing (as traffic seeks cheaper routes) and proves a stability result for this dynamical model. (The dynamical model is based on swapping flow between paired alternative segments (these were introduced by Bar-Gera (2010)) rather than between routes.) It is shown that under certain conditions the dynamical system enters a given connected set of approximate equilibria in a finite number of days or steps. This proof allows for saturation flows which act as potentially active flow constraints. The dynamical system involving paired alternative segment swaps is then combined with a novel green-time-swapping rule; this rule swaps green-time toward more pressurised signal stages. It is shown that if (i) the delay formulae have a simple form and (ii) the “pressure” formula fits the special control policy P0 (see Smith, 1979a,b), then the combined flow-swapping/green-time-swapping dynamical model also enters a given connected set of approximate consistent equilibria in a finite number of steps. Computational results confirm, in a simple network, the positive P0 result and also show, on the other hand, that such good behaviour may not arise if the equi-saturation control policy is utilised. The dynamical models described here do not represent blocking back effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.