Abstract

We numerically study two conservative two-dimensional maps, namely the baker map (whose Lyapunov exponent is known to be positive), and a typical one (exhibiting a vanishing Lyapunov exponent) chosen from the generalized shift family of maps introduced by C. Moore [Phys. Rev. Lett. 64 (1990) 2354] in the context of undecidability. We calculate the time evolution of the entropy S q ≡ ( 1 - ∑ i = 1 W p i q ) / ( q - 1 ) ( S 1 = S BG ≡ - ∑ i = 1 W p i ln p i ). We exhibit the dramatic effect introduced by numerical precision. Indeed, in spite of being area-preserving maps, they present, well after the initially concentrated ensemble has spread virtually all over the phase space, unexpected pseudo-attractors (fixed-point like for the baker map, and more complex structures for the Moore map). These pseudo-attractors, and the apparent time (partial) reversibility they provoke, gradually disappear for increasingly large precision. In the case of the Moore map, they are related to zero Lebesgue-measure effects associated with the frontiers existing in the definition of the map. In addition to the above, and consistent with the results by V. Latora and M. Baranger [Phys. Rev. Lett. 82 (1999) 520], we find that the rate of the far-from-equilibrium entropy production of baker map numerically coincides with the standard Kolmogorov–Sinai entropy of this strongly chaotic system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call