Abstract

Block-floating-point representation is a special case of floating-point representation, where several numbers have a joint exponent term. In this paper, roundoff errors in signal processing systems utilizing block-floating-point representation are studied. Special emphasis is on analysis of quantization errors when data is quantized to a block-floating-point format and on analysis of roundoff errors in digital filters utilizing block-floating-point arithmetic, block-floating-point roundoff errors are found to depend on the signal level in the same way as floating-point roundoff errors, resulting in approximately constant signal-to-noise-ratios (SNRs) over relatively large dynamic range. Both the analysis and simulation results show that block-floating-point is an efficient number representation format. In data representation, a superior performance to fixed- or floating-point representations can be achieved with block-floating-point representation with same total number of bits per sample. In digital filters, block-floating-point arithmetic can provide comparable performance to floating-point arithmetic with reduced complexity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.