Abstract

We develop a fast approximation algorithm called rounded dynamic programming (RDP) for stochastic network design problems on directed trees. The underlying model describes phenomena that spread away from the root of a tree, for example, the spread of influence in a hierarchical organization or fish in a river network. Actions can be taken to intervene in the network—for some cost—to increase the probability of propagation along an edge. Our algorithm selects a set of actions to maximize the overall spread in the network under a limited budget. We prove that the algorithm is a fully polynomial-time approximation scheme (FPTAS), that is, it finds (1−ε)-optimal solutions in time polynomial in the input size and 1/ε. We apply the algorithm to the problem of allocating funds efficiently to remove barriers in a river network so fish can reach greater portions of their native range. Our experiments show that the algorithm is able to produce near-optimal solutions much faster than an existing technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.