Abstract

The vibration patterns of the round window (RW) membrane in human cadaver temporal bone specimens were assessed by measurements of the velocity of reflective targets placed on the RW membrane with an approximate spacing of 0.2 mm. The velocity was measured in the frequency range 0.1–10 kHz by a laser Doppler vibrometer in four specimens with air conduction (AC) stimulation and in four specimens with bone conduction (BC) stimulation. The response pattern was investigated by analyzing the velocity response of all targets on the RW membrane, by making iso-amplitude and iso-phase contour plots of the membrane surface, and by creating animations of the surface vibration at several frequencies. Similar response pattern was found with AC and BC stimulations. At frequencies below 1.5 kHz, the RW membrane vibrates nearly as a whole in an in-and-out motion and above 1.5 kHz, the membrane moves primarily in two sections that vibrate with approximately 180° difference. Indication of some traveling wave motion of the RW membrane at those frequencies was also found. At higher frequencies, above 3 kHz, the membrane motion is complex with a mixture of modal and traveling wave motion. An increase of the stimulation level did not alter the vibration pattern; it only gave an increase of the RW membrane vibration amplitude corresponding to the increase in stimulation. When the mode of stimulation at the oval window was altered, by the insertion of a 0.6 mm piston, the vibration pattern of the RW membrane changed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call