Abstract

In computing with explorable uncertainty, one considers problems where the values of some input elements are uncertain, typically represented as intervals, but can be obtained using queries. Previous work has considered query minimization in the settings where queries are asked sequentially (adaptive model) or all at once (non-adaptive model). We introduce a new model where k queries can be made in parallel in each round, and the goal is to minimize the number of query rounds. Using competitive analysis, we present upper and lower bounds on the number of query rounds required by any algorithm in comparison with the optimal number of query rounds for the given instance. Given a set of uncertain elements and a family of m subsets of that set, we study the problems of sorting all m subsets and of determining the minimum value (or the minimum element(s)) of each subset. We also study the selection problem, i.e., the problem of determining the i-th smallest value and identifying all elements with that value in a given set of uncertain elements. Our results include 2-round-competitive algorithms for sorting and selection and an algorithm for the minimum value problem that uses at most (2+varepsilon ) cdot mathrm {opt}_k+mathrm {O}left( frac{1}{varepsilon } cdot lg mright) query rounds for every 0<varepsilon <1, where mathrm {opt}_k is the optimal number of query rounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.