Abstract

Direct numerical simulation is used to investigate the transition induced by three-dimensional isolated roughness elements in a supersonic boundary layer at a freestream Mach number of 3.5. Simulations are performed for two different configurations: one is a square planform roughness element, and the other is a diamond planform roughness element. The mean flow calculations show that the roughness element induces counter-rotating streamwise vortices downstream of the roughness element. These vortices persist for a long distance downstream, lift the low-momentum fluid from the near-wall region, and place it near the outer part of the boundary layer. This forms highly inflectional boundary-layer profiles. These observations agree with recent experimental observations. The receptivity calculations show that the amplitudes of the mass-flux fluctuations near the neutral point for the diamond-shaped roughness element are the same as the amplitude of the acoustic disturbances. They are three times smaller for the square-shaped roughness element.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.