Abstract

Surface roughness of a silicon wafer heated at 800 to 1100°C under atmospheric pressure in hydrogen ambient is studied. Haze of the surface becomes intense as the heating temperature is decreased. However, haze of the surface does not appear when the native oxide film on the silicon surface is completely removed. Atomic force microscopy images show that the surface heated at 900°C has many small pits whose shapes depend on the crystal plane, that is, squares for the (100) plane and triangles for the (111) plane. The pits are formed due to the difference in the chemical reaction rates between hydrogen‐silicon and hydrogen‐silicon dioxide. Small areas of bare silicon surface caused by the incomplete removal of the native oxide film are etched by hydrogen gas at a faster rate than the native oxide islands. The behavior of surface roughness with pressure and heating time agrees well with that predicted by the pit formation model in this study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.