Abstract
Gravity shedding of droplets is limited by droplet pinning, a major limitation for low condensation processes and in particular passive dew harvesting in its use as an alternative source of water. We present experiments showing that, paradoxically, a simple surface treatment increasing roughness (sand-blasting) favors droplet shedding compared to the original substrate, provided that sand-blasting does not increase too much the surface roughness. Sand-blasting ensures the high density of nucleation sites and enhances drops coalescence and growth at a sub-micron scale, thus lowering the lag-time to obtain drop sliding during condensation. Early nucleation indeed overcompensates the delay increase due to roughness. Edges of the substrate, where drops grow faster, also improve water collection, thanks to the early sliding of edge drops that behave as natural wipers. Combining the effects of sand-blasting and edges increases significantly the rate of collection of dew condensation on a substrate at a given time, gains of about 30% can be commonly obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.