Abstract

The roughness effects of the gas flows of nitrogen and helium in microchannels with various relative roughnesses and different geometries are studied and analyzed by a lattice Boltzmann model. The shape of surface roughness is simulated to be square, sinusoidal, triangular, and fractal. Numerical computations compared with theoretical and experimental studies show that the roughness geometry is an important factor besides the relative roughness in the study of the effects of surface roughness. The fractal boundary presents a higher influence on the velocity field and the resistance coefficient than other regular boundaries at the same Knudsen number and relative roughness. In addition, the effects of rarefaction, compressibility, and roughness are strongly coupled, and the roughness effect should not be ignored in studying rarefaction and compressibility of the microchannel as the relative roughness increases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call