Abstract

Topographic features change the hydrodynamic regime over surfaces subjected to flow. Hydrodynamic microenvironments around topographic structures may have consequences for recruitment and removal of propagules of marine benthic organisms. The settlement and adhesion of zoospores from the green alga Ulva linza (syn. Enteromorpha linza) to defined topographies was investigated. A range of topographic size scales (Rz: 25 – 100 μm) was manufactured from plankton nets, creating patterns with ridges and depressions. The topographic scales span a roughness similar to that of natural substrata and antifouling coatings. Spores were removed from the surfaces by a calibrated water jet. Fewer spores were removed from the smallest topographic structure tested (Rz: 25 μm) compared to both the smooth (Rz: 1) and the roughest (Rz: 100 μm) structures. Zoospores that settled in depressions were less likely to be removed compared to spores on the ridges. The results in terms of the interaction between surface topography and hydrodynamic forces have implications for both natural substrata exposed to wave action and antifouling surfaces on ships' hulls. The possible effects of topography on increasing zoospore adhesion and offering a refuge from hydrodynamic forces are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.