Abstract

We use highly resolved numerical simulations to study turbulent Rayleigh-Bénard convection in a cell with sinusoidally rough upper and lower surfaces in two dimensions for Pr=1 and Ra=[4×10^{6},3×10^{9}]. By varying the wavelength λ at a fixed amplitude, we find an optimal wavelength λ_{opt} for which the Nusselt-Rayleigh scaling relation is (Nu-1∝Ra^{0.483}), maximizing the heat flux. This is consistent with the upper bound of Goluskin and Doering [J. Fluid Mech. 804, 370 (2016)JFLSA70022-112010.1017/jfm.2016.528] who prove that Nu can grow no faster than O(Ra^{1/2}) as Ra→∞, and thus with the concept that roughness facilitates the attainment of the so-called ultimate regime. Our data nearly achieve the largest growth rate permitted by the bound. When λ≪λ_{opt} and λ≫λ_{opt}, the planar case is recovered, demonstrating how controlling the wall geometry manipulates the interaction between the boundary layers and the core flow. Finally, for each Ra, we choose the maximum Nu among all λ, thus optimizing over all λ, to find Nu_{opt}-1=0.01×Ra^{0.444}.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call