Abstract

The effects of the surface roughness and the turbulence intensity on the dynamic characteristics of the flow induced oscillations of an elastically supported single circular cylinder in a cross flow in the vortex shedding and fluid elastic regions were experimentally investigated. The results of these experiments indicate that, for the vortex shedding region, increasing the surface roughness results in a reduction of the amplitude of oscillation, while in the fluid elastic region, increasing the surface roughness tends to enhance the oscillations. A similar trend for the dynamic response of the cylinder in the vortex shedding region was also observed when the free stream turbulence intensity was varied, while in the fluid elastic region variations in the free stream turbulence intensity were observed to have no drastic effect on the dynamic response of the cylinder.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.