Abstract

An attempt to improve the machining performance of NbC-Ni cutting inserts by rapid pulse electric current sintering (PECS), TiC and Mo2C additions and laser surface modification (LSM) was done. Use of a nickel binder and additions TiC and Mo2C to liquid phase sintered (LPS) NbC based samples led to comparable hardness (>13 GPa) and KIC (~10 MPa.m1/2) to LPS WC-Co/Ni samples. The laser surface modification (LSM) technique produced a ~2.5 μm thick self-carbide coating, increasing the surface hardness of all the samples. Laser surface modification was done to improve abrasion and attrition wear resistance. Face-milling of grade 17 grey cast iron (BS 1452/GG35) was conducted at 100–500 m/min cutting speeds (vc) and 0.25–1.5 mm depths of cut (ap). The insert wear was measured after every pass, and analyzed by annular dark field scanning transmission electron microscopy (ADF-STEM). During roughing, WC-Co based inserts had the lowest flank wear rate (FWR) values, with the WC-10Co (LPS) insert having a FWR of 10.15 μm/min after 20 min cutting time. However, during semi-finishing and finishing, NbC-4TiC-12Ni (PECS) and NbC-4Mo2C-4TiC-12Ni (PECS) inserts had the lowest FWR values, showing up to six times longer tool life than the WC-Co (LPS) inserts based inserts and 12 times longer life than the WC-Ni based inserts. Generally, LSM improved the NbC inserts' tool life, reducing the FWR values in all NbC based inserts in all cutting tests.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call