Abstract

We simulate competitive two-component growth on a one-dimensional substrate of L sites. One component is a Poisson-type deposition that generates Kardar-Parisi-Zhang (KPZ) correlations. The other is random deposition (RD). We derive the universal scaling function of the interface width for this model and show that the RD admixture acts as a dilatation mechanism to the fundamental time and height scales, but leaves the KPZ correlations intact. This observation is generalized to other growth models. It is shown that the flat-substrate initial condition is responsible for the existence of an early nonscaling phase in the interface evolution. The length of this initial phase is a nonuniversal parameter, but its presence is universal. We introduce a method to measure the length of this initial nonscaling phase. In application to parallel and distributed computations, the important consequence of the derived scaling is the existence of the upper bound for the desynchronization in a conservative update algorithm for parallel discrete-event simulations. It is shown that such algorithms are generally scalable in a ring communication topology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call