Abstract

Roughening in the electronic growth of Ag films on Si(111)-(7×7) surfaces for a film thickness ranging from 1 to 30 monolayers is reported. Ag films exhibit the growth of flat-top plateaus of preferential heights due quantum electronic effect. We have observed roughening of the film growth due to instability with linear diffusion characterized by the ln(θ)(1/2) dependence of the local surface slope, where θ is the Ag coverage. The roughening of the surface morphology has been characterized by scaling exponents α, β and 1/z, which are determined using scanning tunneling microscopy. Increased value of α = 0.67 ± 0.04 at the early stage of the electronic growth with two atomic layer height flat-top isolated Ag mounds to 0.77 ± 0.06 at the later stage of the growth when isolated mounds coalesce and form percolated structures maintaining preferential heights of an even number of atomic layers in the Ag mounds indicates the instability in the electronic growth. As a result, interface width W increases as a power law of coverage (θ), W ∼ θ(β), with growth exponent β = 0.33 ± 0.03, and lateral correlation length ξ grows as ξ ∼ θ(1/z) with 1/z = 0.27 ± 0.05.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.