Abstract

Low-cost, voltage-driven biocatalytic designs for rapid drug metabolism assay, chemical toxicity screening, and pollutant biosensing represent considerable significance for pharmaceutical, biomedical, and environmental applications. In this study, we have designed biointerfaces of human liver microsomes with various roughened, high-purity graphite disk electrodes to study electrochemical and electrocatalytic properties. Successful spectral and microscopic characterizations, direct bioelectronic communication, direct electron-transfer rates from the electrode to liver microsomal enzymes, microsomal heme-enzyme specific oxygen reduction currents, and voltage-driven diclofenac hydroxylation (chosen as the probe reaction) are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.