Abstract

Mapping, real-time localization, and path planning are prerequisites for autonomous robot navigation. These functions also facilitate situation awareness of remote operators. In this paper, we propose methods for efficient 3D mapping and real-time 6D pose tracking of autonomous robots using a continuously rotating 2D laser scanner. We have developed our approach in the context of the DLR SpaceBot Cup robotics challenge. Multi-resolution surfel representations allow for compact maps and efficient registration of local maps. Real-time pose tracking is performed by a particle filter observing individual laser scan lines. Terrain drivability is assessed within a global environment map and used for planning feasible paths. Our approach is evaluated using challenging real environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.