Abstract

Experimental evidences are reported on the potential of direct metal laser sintering (DMLS) in manufacturing flat and finned heat sinks with a remarkably enhanced convective heat transfer coefficient, taking advantage of artificial roughness in fully turbulent regime. To the best of our knowledge, this is the first study where artificial roughness by DMLS is investigated in terms of such thermal performances. On rough flat surfaces, we experience a peak of 73% for the convective heat transfer enhancement (63% on average) compared to smooth surfaces. On rough (single) finned surfaces, the best performance is found to be 40% (35% on average) compared to smooth finned surface. These results refer to setups with Reynolds numbers (based on heated edge) within 3500≲ReL≲16,500 (corresponding to 35,000≲ReD≲165,000 in terms of Reynolds number based on hydraulic diameter). Experimental data are obtained by a purposely developed sensor with maximum and mean estimated tolerance intervals of ±7.0% and ±5.4%, respectively. Following the idea by Gioia et al. (2006) [48], we propose that heat transfer close to the wall is dominated by eddies with size depending on the roughness dimensions and the viscous (Kolmogórov) length scale. An excellent agreement between the experimental data and the proposed analytical model is finally demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.