Abstract
This paper describes the relationship between support vector regression (SVR) and rough (or interval) patterns. SVR is the prediction component of the support vector techniques. Rough patterns are based on the notion of rough values, which consist of upper and lower bounds, and are used to effectively represent a range of variable values. Predictions of rough values in a variety of different forms within the context of interval algebra and fuzzy theory are attracting research interest. An extension of SVR, called rough support vector regression (RSVR), is proposed to improve the modeling of rough patterns. In particular, it is argued that the upper and lower bounds should be modeled separately. The proposal is shown to be a more flexible version of lower possibilistic regression model using ϵ -insensitivity. Experimental results on the Dow Jones Industrial Average demonstrate the suggested RSVR modeling technique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.