Abstract

Clustering categorical data arising as an important problem of data mining has recently attracted much attention. In this paper, the problem of unsupervised dimensionality reduction for categorical data is first studied. Based on the theory of rough sets, the attributes of categorical data are decomposed into a number of rough subspaces. A novel clustering ensemble algorithm based on rough subspaces is then proposed to deal with categorical data. The algorithm employs some of rough subspaces with high quality to cluster the data and yields a robust and stable solution by exploiting the resulting partitions. We also introduce a cluster index to evaluate the solution of clustering algorithm for categorical data. Experimental results for selected UCI data sets show that the proposed method produces better results than those obtained by other methods when being evaluated in terms of cluster validity indexes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.