Abstract
The notion of a rough set was originally proposed by Pawlak [Z. Pawlak, Rough sets, International Journal of Computer and Information Sciences 11 (5) (1982) 341–356]. Later on, Dubois and Prade [D. Dubois, H. Prade, Rough fuzzy sets and fuzzy rough sets, International Journal of General System 17 (2–3) (1990) 191–209] introduced rough fuzzy sets and fuzzy rough sets as a generalization of rough sets. This paper deals with an interval-valued fuzzy information system by means of integrating the classical Pawlak rough set theory with the interval-valued fuzzy set theory and discusses the basic rough set theory for the interval-valued fuzzy information systems. In this paper we firstly define the rough approximation of an interval-valued fuzzy set on the universe U in the classical Pawlak approximation space and the generalized approximation space respectively, i.e., the space on which the interval-valued rough fuzzy set model is built. Secondly several interesting properties of the approximation operators are examined, and the interrelationships of the interval-valued rough fuzzy set models in the classical Pawlak approximation space and the generalized approximation space are investigated. Thirdly we discuss the attribute reduction of the interval-valued fuzzy information systems. Finally, the methods of the knowledge discovery for the interval-valued fuzzy information systems are presented with an example.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.