Abstract
Representing the positive, possible, and boundary regions of clusters, rough set-based C-means clustering methods, such as generalized rough C-means (GRCM) and rough set C-means (RSCM), are promising for analyzing vague cluster shapes and realizing reliable classification. In this study, we consider rough set-based clustering approaches that utilize probabilistic memberships as variants of GRCM and RSCM, including π generalized rough C-means (πGRCM), π rough set C-means (πRSCM), and rough membership C-means (RMCM). πGRCM and πRSCM assign equal probabilities of cluster belonging according to Laplace’s principle of indifference, whereas RMCM assigns the probabilities according to rough memberships, which represent conditional probabilities based on the object’s neighborhood derived from a binary relation. In addition, we discuss the theoretical validity of our RMCM approach and compare it with other methods considered in this study. Furthermore, we conducted numerical experiments for evaluating the classification performances of the abovementioned methods. Based on our experimental results, the methods were found to be effective.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Advanced Computational Intelligence and Intelligent Informatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.