Abstract
In the paper we present Rough Set approach to reasoning in incomplete information systems. We propose reduction of knowledge that eliminates only that information, which is not essential from the point of view of classification or decision making. In our approach we make only one assumption about unknown values: the real value of a missing attribute is one from the attribute domain. However, we do not assume which one. We show how to find decision rules directly from such an incomplete decision table, which are as little non-deterministic as possible and have minimal number of conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.