Abstract

This paper present a method to generate 3-axis NC programs for rough milling processes. A raster digitizing of the solid volume delimitated by sculptured surfaces to be machined is first created. This is accomplished by using the so-called Z-buffer created from a parallel projection of all surfaces. Conventional rendering software can be used to generate the Z-buffer. This volume is transformed into a 3-D mesh composed of “empty”, “full”, and “mixed” blocks. Machining is preformed from top to bottom in a sequence of horizontal cutting planes. At each level of planar machining, spiral routines are used to generate the tool path. The proposed method is valid for generating tool paths for general cavities bounded by arbitrary surfaces. One of the notable advantages of the proposed method is that the tool path generation is independent from the geometric description of bounding surfaces. An example is used to illustrate the approach and its advantages.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call