Abstract

Recently, it was shown that rottlerin inhibits insulin-stimulated glucose uptake and reduces intracellular adenosine triphosphate (ATP) levels in 3T3-L1 adipocytes, suggesting that these two events are causally linked. However, several other reports show that ATP-depletion induces glucose uptake in both muscle cells and adipocytes. In the present study, the mechanism of inhibition by rottlerin was studied in detail, in order to resolve this apparent discrepancy. It was found that rottlerin strongly reduces insulin-stimulated 2-deoxyglucose (2-DOG) uptake in 3T3-L1 adipocytes by a partial inhibition of the translocation of the insulin-responsive GLUT4 glucose transporter towards the plasma membrane (PM). Whereas the insulin-induced phosphatidyl-inositol-3′ (PI-3′) kinase signaling pathway is unaffected by rottlerin, Cbl tyrosine phosphorylation, which provides an essential, PI-3′ kinase-independent signal towards GLUT4 translocation, is markedly attenuated. Furthermore, we also observed a direct inhibitory effect of rottlerin on insulin-induced glucose uptake in 3T3-L1 adipocytes. The direct inhibition of insulin-stimulated 2-DOG uptake by rottlerin displayed characteristics of uncompetitive inhibition: with the K m(app) of glucose uptake reduced from 1.6 to 0.9 mM and the V max(app) reduced from 5.2 to 1.0 nmol/min mg in the presence of rottlerin. In conclusion, rottlerin inhibits multiple steps involved in insulin-stimulated 2-DOG uptake in 3T3-L1 adipocytes. The observed reduction in GLUT4 translocation towards the PM and the uncompetitive inhibition of the glucose transport process provide alternative explanations for the inhibitory effects of rottlerin aside from the effects of rottlerin on intracellular levels of ATP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call