Abstract

The infrared spectrum of water observed in sunspots is complex and dense, with bands separated by approximately 0.01cm-1. For top asymmetrical molecules, there is no theoretical approach that allows for the calculation of rotovibrational energy with such precision. Experimentally derived rotovibracional energy levels of water at high temperatures combined with variational calculations have been used for the band assignments. These energy levels are employed to refine the analysis of a small portion of the infrared absorption spectrum. Such procedure has allowed for the identification of additional 55 bands to the 70 already identified as rotovibrational transitions of the water molecule. Our new assignments, which include pure and cross transitions, offer additional evidence of the existence of water on the sun, but above all they illustrate the complexity of the solar spectrum that involves states with higher levels of rotational excitation. Given the conditions on the sun, more molecules of water would occur in excited electronic states, which include apolar and paramagnetic states, generating intense bands in the spectrum. Since there is an analytical solution for the rotovibrational transitions of linear molecules, we were able to identify 16 bands relative to the excited electronic states 1B2 and 3A1 in the sunspot spectrum. Density functional B3LYP/AUG-cc-pVTZ calculations of the electric and magnetic dipole are employed to discuss some consequences of the presence of excited states of water in the dynamics of sunspots and solar magnetic field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.