Abstract
This two-part paper presents detailed experimental investigations of unsteady aerodynamic blade row interactions in the four-stage Low-Speed Research Compressor of Dresden. In part I of the paper the unsteady profile pressure distributions for the nominal setup of the compressor are discussed. Furthermore the effect of blade row clocking on the unsteady profile pressures is investigated. Part II deals with the unsteady aerodynamic blade forces, which are calculated from the measured profile pressure distributions. The unsteady pressure distributions were analysed in the first, a middle and the last compressor stage both on the rotor and stator blades. The measurements were carried out on pressure side and suction side at midspan. Several operating points were investigated. A complex behaviour of the unsteady profile pressures can be observed, resulting from the superimposed influences of the wakes and the potential effects of several up- and downstream blade rows of the four-stage compressor. The profile pressure changes nearly simultaneously along the blade chord if a disturbance arrives at the leading edge or the trailing edge of the blade. Thus the unsteady profile pressure distribution is nearly independent of the convective wake propagation within the blade passage. A phase shift of the reaction of the blade to the disturbance on the pressure and suction side is observed. In addition clocking investigations were carried out to distinguish between the different periodic influences from the surrounding blade rows. For this reason the unsteady profile pressure distribution on rotor 3 was measured, while stator 1–4 were separately traversed stepwise in the circumferential direction. Thus the wake and potential effects of the up- and downstream blade rows on the unsteady profile pressure could clearly be distinguished and quantified.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.