Abstract

Turbochargers (TCs) improve performance in internal combustion engines. Due to low production costs, TC assemblies are supported on floating ring bearings (FRBs). TCs show subsynchronous motions of significant amplitudes over a wide speed range. However, the subsynchronous whirl motions generally reach a limit cycle enabling continuous operation. The paper advances progress on the validation against measurements of linear and nonlinear rotordynamic models for predicting shaft motions of automotive TCs. A comprehensive thermohydrodynamic model predicts the floating ring speeds, inner and outer film temperatures and lubricant viscosity changes, clearances thermal growth, operating eccentricities for the floating ring and journal, and linearized force coefficients. A nonlinear rotordynamics program integrates the FRB lubrication model for prediction of system time responses under actual operating conditions. Measurements of shaft motion in a TC unit driven by pressurized air demonstrate typical oil-whirl induced instabilities and, due to poor lubricant conditions, locking of the floating rings at high shaft speeds. Nonlinear predictions are in good agreement with the measured total amplitude and subsynchronous frequencies when implementing the measured ring speeds into the computational model. The computational tools aid to accelerate TC prototype development and product troubleshooting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.