Abstract
At present, the majority of power steam turbines operate under part-load conditions during most of their working time in accordance with the fluctuation of power supply. The load governing method may cause partial admission in control stage and even some pressure stages, which impacts much on the stability of the rotor system. In this paper, CFD and FEM method were used to analyze the effect of partial admission on rotor system stability. A new approach is proposed to simplify the 3D fluid model for a partial admission control stage. Rotordynamic analysis was carried out to test the stability of the HP rotor of a 600 MW steam turbine under different load conditions. 13 different governing modes on the rotor stability were conducted and data were analyzed. It is found that rotor stability varies significantly with different governing modes and mass flow rates, which is consistent with the operation. Asymmetric fluid forces resulted from partial admission cause a fluctuation of the dynamic characteristics of the HP bearings, which consequently affect the stability of the rotor system. One of the nozzle governing modes in which the diagonal valves open firstly is demonstrated as the optimal mode with the maximum system stability. The optimization has been applied to 16 power generation units in China and result in improved rotor stabilities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.