Abstract

The basic equations are derived for incompressible flow in an annular seal with partially roughened surfaces. The flow is assumed to be completely turbulent in the axial and circumferential directions with no separation, and is modeled by Hirs’ turbulent lubrication equations. Linearized zeroth and first-order perturbation equations are developed for small motion about a centered position by an expansion in the eccentricity ratio. The zeroth-order continuity and momentum equations are solved numerically, yielding the axial and circumferential velocity components and the pressure distribution. The first-order equations are reduced to three linear, complex, ordinary, differential equations in the axial coordinate Z. The equations are integrated to satisfy the boundary conditions and yield the perturbated pressure distribution. This resultant pressure distribution is integrated along and around the seal to yield the force developed by the seal from which the corresponding dynamic coefficients are derived. The results of a parametric study on the effect of the rough length/smooth length ratio on the seal leakage and rotordynamic coefficients are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.