Abstract
AbstractThis paper describes the development and validation of a high fidelity simulation model of the Bell 412 helicopter for handling qualities and flight control investigations. The base-line model features a rigid, articulated blade-element formulation of the main rotor, with flap and lag degrees of freedom. The Bell 412 HP engine/governor dynamics are represented by a second-order system. Other key features of the base-line model include a finite-state dynamic inflow model and lag damper dynamics. The base-line model gives excellent agreement with flight-test data over the speed range 15-120kt for on-axis responses. Prediction of off-axis responses is less accurate. Several model enhancement options were introduced to obtain an improved off-axis response. It is shown that the pitch/roll off-axis responses in transient manoeuvres can be improved significantly by including wake geometry distortion effects in the Peters-He finite-state dynamic inflow model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.