Abstract
ABSTRACTThe aim of the present study is to develop a relatively simple flight dynamic model which should have the ability to analyse trim, stability and response characteristics of a rotorcraft under various manoeuvring conditions. This study further addresses the influence of numerical aspects of perturbation step size in linearised model identification and integration timestep on non-linear model response. In addition, the effects of inflow models on the non-linear response are analysed. A new updated Drees inflow model is proposed in this study and the applicability of this model in rotorcraft flight dynamics is studied. It is noted that the updated Drees inflow model predicts the control response characteristics fairly close to control response characteristics obtained using dynamic inflow for a wide range of flight conditions such as hover, forward flight and recovery from steady level turn. A comparison is shown between flight test data, the control response obtained from the simple flight dynamic model, and the response obtained using a more detailed aeroelastic and flight dynamic model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.