Abstract

This paper presents a theoretical analysis of the dynamics of a rotor-bearing system. The analysis is quite general but because of space limitations only the symmetrical rotor supported in two plain cylindrical journal bearings is considered. Furthermore, the rotor mass is concentrated at midspan giving the rotor only one degree of freedom. Limiting the analysis to small amplitudes of rotor motion the components of the fluid film force are made linear with respect to journal amplitude and velocity. The resulting 8 coefficients, denoted spring and damping coefficients, are calculated from Reynolds equation and by coupling them with the rotor, the motion and the force transmitted to the bearing pedestal are obtained. Results are presented in dimensionless form for transmitted force and for critical speed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call