Abstract
Rotor vibration control during start up, acceleration and deceleration phases is one of the key problems besides stable levitation, in high-speed applications of bearingless switched reluctance motor (BSRM). In this paper, an effective intelligent sliding mode controller is proposed for suppressing the rotor vibration due to residual unbalance and external disturbance during levitation and motoring phases. The parameters of time-varying sliding surface for avoiding high control gains and chattering are adjusted integrating the sliding mode control (SMC) and features of fuzzy logic control. The experimental studies conducted on a prototype BSRM system confirm that the application of fuzzy SMC guarantees the robust performance with less chattering under model uncertainties and unknown external disturbances compared to classical sliding mode controller.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.