Abstract

This paper presents an integrated flight control system with rotor-state feedback for helicopter approaching to the ship deck. First, a high-order nonlinear flight dynamics model coupled with the reconstructed ship airwake turbulence is developed. Then, a rotor-state feedback control law is developed and integrated into the baseline explicit model-following control system to form an integrated control system. The feedback gains of body and rotor states are designed together to improve the disturbance rejection over the ship airwake frequencies (1 to ). A feedforward compensator is introduced to improve aircraft response bandwidth. Furthermore, a method to adjust the command model is developed for further improvement of the response bandwidth. Finally, the effectiveness of the integrated control system is demonstrated with linear analysis, and pilot workload is evaluated with nonlinear simulation. In comparison to the baseline control system, the integrated control system improves both the disturbance rejection over the ship airwake frequencies and attitude response bandwidths of rolling and pitching motions. The pilot workload for the roll and pitch attitude regulation in ship airwake turbulence is reduced by 45 and 26%, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.