Abstract

High-frequency signal injection methods have been widely used in sensorless control of permanent-magnet synchronous motor (PMSM) drives. However, the acoustic noise and torque ripples caused by the injected high-frequency signal limit the application of the methods. To avoid these drawbacks, this paper proposes a position estimation method that combines derivative calculations of current and zero-voltage-vector (ZVV) injection, which is especially effective for zero- and low-speed operation of sensorless PMSM drives. This investigation mainly focuses on the extraction of rotor position from ZVV period and the improvements of the accuracy of estimated position. The PMSM equation is developed in the stationary frame when ZVV is applied. The proposed $d$ -axis current allocation scheme ensures the application of the proposed method from no load to rated load. A modified space vector pulse width modulation (SVPWM) control strategy and a ZVV extension scheme are employed to improve the accuracy of estimated position, which also makes the method more realizable. Further, a novel current sampling method that selects two suitable phase currents for derivative calculation according to the voltage sector location is proposed, which can help reduce current derivative ripples and decrease position estimation errors. Finally, the effectiveness of the proposed position estimation strategy is verified on a 1.0-kW interior PMSM (IPMSM) drive platform.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.